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In this paper, the eguation for the motion of a system of varying com- 
position is obtained, taking into account variational forces arising 
because of the nonstationary motion of the medium, and connected with 
the variation of the momentum with respect to a solid shell. The solu- 
tion of the Okhotsimskii problem is given; and the effect of varying 
forces on the motion of systems of varying conposition with a fluid as 
an operating substance is studied. The possibility of increasing the 
final speed of such systems by periodic displacement, by internal forces, 
of the center of gravity of the system with respect to the solid shell 
is investigated. 

Equations of motion of systems with varying composition are obtained 

in the most general form in the paper by Gantmakber and Levin fI1. In 
the paper quoted the general expression for the variational forces is 

given, arising during nonstationary motion of the medium forming the 
operating substance, and equal to the variation of the momentum of the 
system with respect to the solid shell. From this expression it follows 
that for rockets with liquid or solid fuel the variational forces are 
negligibly small in comparison to the reactive forces [21. 

There exist, however, a number of systems in which these forces Play 

an essential role and taking them into account leads to consequences 
unusual at first glance. 

Let us consider the so-called Okhotsimskii problem. 

On a smooth horizontal surface is located a carriage with s tank 
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Motion of system of varying conposition 701 

filled with water. Find the law of motion of the carriage, if the water 

flows out according to a given law through a vertical tube, situated at 

a distance 1 from the center of gravity C, of the carriage with the 

empty vessel. 

Let x be the coordinate of the center of gravity C, of the carriage 

with the empty tank, and m0 its mass. Let, further, the mass of the 

carriage with the tank containing water be equal to m(t). If, in the 

process of flowing out, the position of the center 

vessel with water is displaced with respect to C,, 

x1 may be written down as 

of gravity C of the 

then its coordinate 

Zrr = 2 + a(t) 

where a(t) - the coordinate of C with respect to C, - is a certain 

function of time depending on the geometry of the vessel and on the law 

of efflux. Let us use the law of conservation of the center of gravity 

of the system consisting of the vessel with the liquid and the drops 

flowing out of the tube at the moment of time - 0~ < T < t. 'Ihe static 

moment of the entire system is 

(5 + a)m + \ E(t, z)dm, = MX, = const (1) 

where c(t, -r) is the coordinate at the instant t of the drop of mass 

$, discharged from the vessel at the mint 7; M is the mass of the 

entire system. 

If the drop leaves the tube with a relative velocity whose projection 

onto the x-axis is u, then 

g (t, z) == z + I + (z + i +- u) (t -z) (2) 

It is assumed that, in general, the tube (nozzle) can be displaced 

with respect to the vessel by means of a certain mechanism, according 

to a given law I = I(t). Noting that (tl;lT = m&, we differentiate (1) 

twice with respect to t. We obtain 

m~+mn+m(2a-2i--u)+m(n-z)=o (3) 

It is evident that equation (3) is applicable not only to the prob- 

lem of Okhotsimskii but also to reactive systems of the most different 

design. Let us consider some of them. 

1. Carriage of ~k~otsi~sk~i. For it, 1 = const, and we shall consider 

the efflux of the liquid occurring so that the coordinates C and C, co- 

incide, i.e. a = 0. Since the liquid flows out through the vertical 

tube, the projection u of the relative velocity onto the x-axis is zero. 
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Thus equation (3) is reduced to the equation 

M& =& 

from which we easily find the speed of the carriage at any instant t 

Let us consider the discharge regime 

We have 

*. 
m = - p&(t) + pitI (t - T) 

(6) 

Substituting (6) and (7) into (S), we obtain* 

( 

0 +-<<to0) 
0 = lplml (O<tdT) 

~m(1/m--llml) (T<t<m) 

%US, if the tube is situated to the right of the center of gravity 
C (1 > O), then the carriage, beginning at the instant of discharge of 
the liquid, moves with the constant speed - tp/ml to the left; then, 
when all the fluid has flowed out of the vessel, the carriage will 
change the magnitude and direction of its velocity with a jerk, and be- 
gin to move to the right with the speed Zp( l/n, - l/ml). 

2. Rocket with a fluid as operating substance. Let the position of 
the nozzle and the center of gravity C remain invariable with respect 
to Co, i.e. 1 = const and a = 0, but the projection onto the x-axis of 

the relative velocity of the discharged liquid u # 0. In this case equa- 
tion (3) will be 

mJ:= &z-&l (8) 

Equation (8) is the generalization of the Meshcherskii equation which 
takes into account the motion of the fluid with respect to the body of 
the rocket. This equation is easily integrated, so that the speed of the 

l It is not difficult to see that v and ; have the same discontinuities. 

This is easy to prove by considering the equation obtained from (1) 
by differentiating once. 
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rocket at any instant of time turns out to be 

d=uIn~+1$+1 i [;)2dt 
. 

--oo 

For the final speed, when m(m) = mO, i(m) = 0 we have 

O” -2 

v=- uln 2 + 1 
\() 

; dt (10) . 
--cm 

‘Ihus, in contrast to the known result, the taking into account of 

the relative motion of the fluid leads to the dependence of the final 

speed of the rocket on the location of the nozzle (1 > 0 or 1 < 0) and 

on the regime of discharge m(t). 

Fig. 1. Fig. 2. 

Thus, for the regime of discharge (6) the speed of the motion of the 

rocket turns out to be 

{ 

0 (--<<to) 
V = uln[(ml--Clt)/nll]-_~/ml (O<t<T) 

uln(m,/ml)+1~(I/m,--llml) (T<t<m) 

Let us introduce the notations 

and let us consider the motion of the rocket for various values of a 

and z. 

Let a > 0 (nozzle to the right of C): 

if 5 > a, then the final velocity of the rocket is directed to the 

side opposite to the direction of the discharged fluid (Fig. 1); its 

absolute value turns out to be smaller by ua(z - 1)/z than according to 

the Tsiolkovskii formula (dashed line in Fig. 1 and 2); 

if < < a, then the final velocity of the rocket turns out to be 
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directed to the same side to which the fluid is discharged (Fig. 2); 

if < = a, an unexpected result is obtained: the rocket gathers speed 

and moves to the side opposite to the direction of the discharged fluid, 

but at the last moment, when the discharge of the fluid stops, the speed 

of its motion becomes equal to zero, and the rocket stops at a given 

space point. 

If a < 0 (this case is possible when the nozzle is situated to the 

left of C (1 < 0)), then for any z > 1 the rocket has at the initial 

instant the speed uo/z directed to the same side to which the fluid is 

discharged. 'Ihen a braking occurs, the velocity changes its sign, and 

at the last moment the rocket increases its speed with a jump and con- 

tinues to move in the negative direction with a speed which exceeds that 

given by the Tsiolkovskii formula by uo(z - 1)/z (Fig. 3). 

It can be rigorously shown that for 2 < 0 the discharge regime (6) 

is the best of all possible regimes m(t) for 

which ~>-nr, in the sense of obtaining the 

maximal final speed. The proof is obtained 

from formula (lo), if one notes that 

(i)” = (d)’ (- (f)‘P 
From this 

'lhus the equality sign is obviously valid 

then, and only then, when - ; E ~1 for O< t<T, 
i.e. at the discharge regime (6). 

PJ 

UP T t 
. 

\ 
\ 77G \ 

\ 

’ i/a -- - 

LQ”z 

Fig. 3. 

Thus, for certain values of the parameters a and z a gain in the 

final speed of the rocket is possible, as compared with the case a = 0, 

when the Tsiolkovskii formula is valid. It is worth noting that this 

gain arises because of a more rational redistribution of the energy be- 

tween the body of the rocket and the ejected fluid, i.e. because of the 

increase of efficiency 

00 

s ‘a’ (u+z) nzd: 

--CO 

Here E" is the final kinetic energy of the rocket body; E is the 
kinetic energy of the entire ejected fluid. As simple calculations show, 
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the efficiency turns out to be (for the regime (6)) 

The relation between q and a at constant z is given in Fig. 4. 

The efficiency of the rocket grows 

with the increase of the nozzle dis- 

tance from the center of gravity C 

of the rocket if the nozzle is situ- 

ated as shown in Fig. 5. 

It if the nozzle is located to 

0 - a the right of the center of gravity 

Fig. 4. 
of the rocket, then for a certain 

length 1, q becomes zero, which cor- 

responds to a stopping of the rocket 

after ejection of the entire fluid. With further increase of 1 the 

efficiency q increases and reaches the limiting value 1 - z-l for a >> 5. 

Ft is noteworthy that the efficiency coefficient according to 

Tsiolkovskii, q,,, equal to q(0, z), has the maximum value q,., = 0.65 

for z = 5, and decreases to zero as z - aa (Fig. 6). 

3. Fluid rocket with a motor performing a periodic displacement of 
the center of gravity of the rocket with respect to its shell. To re- 

present the essence of the matter more clearly, let us consider an 

Fig. 5. Fig. 6. 

ordinary rocket inside which there is a sufficiently large mass which 

is displaced by internal forces from the front wall to the rear and 

back. 

As a result of such a shifting, the center of gravity C, of the body 

of the rocket will shift with respect to the center of gravity C of the 

entire rocket, together with the fluid, so that 

a = a, - 6% (t) sin (ot + cp) 

where K(t) is a function describing the transition 

beginning and the end of discharge; it is definite 
processes at the 

and twice 

(12) 
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differentiable in (- 0~) Q)), equal to zero outside the segnent [O, 'l'j 

and equal to unity on [t,, t,l, where [t,, t,] C (0, 7'). 

Let 1 - a = s, then for 1 = const equation (3) becomes 

,--ui 1 ($) 
(13) 

'Ihus the speed of the rocket at any instant of time turns out to be 

v=uln 
t (rns) 

e+\+t (14 

or, integrating by parts 

v=uln m --+@+ j ($Tlt+ ( $dt 
--a3 so 

Let the law of efflux be given in the form 

t 

m=mlexp - 
( s 

(q + e sin ot)x(t)dt) @<a B 4) (16) 
0 

Noting that s = s0 + 6K(t) Sin (at + T), let US make SW estimates 

of the final speed v(T). We have 

0 2 a s = (q + e sin at)9 (so + 6x (t) sin (ot + cp)) x2 (t) (17) 

0 
$ ~=x(t)(q+esinot)(k(t)sin(wi+~)+%((t)u,cos(caf-f-rg))II (18) 

In evaluating the integrals of (17) and (18), we use the fact that 

El 

s f(t)sin(ot+a)dt-uO as ~-+a, 
A 

Denoting the sum of such integrals by h(o), we obtain for the final 

speed of the rocket 

v=uIn2+[(qa + $) so--$bmsincp 1 A+ Bqe6coscp.+ 

+C~coscp+h(co) (19) 
Here 
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A = ix%&, B = ~xW, 
0 0 0 

lhls, from formula (19) it is seen that, with a sufficiently large 

frequency o and cp = f l/2 H, the rocket’s speed may be made very high. 
l3y changing the sign of the phase 9 one may achieve a change of the 

direction of the final velocity of the rocket. 

lhus, the energy of the internal forces producing a periodic dis- 

placement of the center of gravity of the rocket with respect to its 

shell, may under certain circumstances be used to increase the absolute 

speed of the rocket. Rut there is, of course, no contradiction to the 
basic laws of mechanics: no more takes place than the most rational 

redistribution of the energy between the 

fluid, for equality of their moments. 

In conclusion we consider it our duty 

his remarks and interest in the paper. 

rocket body and the ejected 
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